
Stateflow®

Reference

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Stateflow® Reference
© COPYRIGHT 2006–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2006 Online only New for Version 6.4 (Release 2006a)
September 2006 Online only Revised for Version 6.5 (Release R2006b)
September 2007 Online only Rereleased for Version 7.0 (Release 2007b)
March 2008 Online only Revised for Version 7.1 (Release 2008a)
October 2008 Online only Revised for Version 7.2 (Release 2008b)
March 2009 Online only Rereleased for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.4 (Release 2009b)
March 2010 Online only Rereleased for Version 7.5 (Release 2010a)
September 2010 Online only Rereleased for Version 7.6 (Release 2010b)
April 2011 Online only Rereleased for Version 7.7 (Release 2011a)
September 2011 Online only Rereleased for Version 7.8 (Release 2011b)
March 2012 Online only Revised for Version 7.9 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)
March 2015 Online only Revised for Version 8.5 (Release 2015a)
September 2015 Online only Revised for Version 8.6 (Release 2015b)
October 2015 Online only Rereleased for Version 8.5.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 8.7 (Release 2016a)
September 2016 Online only Revised for Version 8.8 (Release 2016b)
March 2017 Online only Revised for Version 8.9 (Release 2017a)
September 2017 Online only Revised for Version 9.0 (Release 2017b)

Functions — Alphabetical List
1

Block Reference
2

v

Contents

Functions — Alphabetical List

1

sfclipboard
Stateflow clipboard object

Syntax
object = sfclipboard

Description
object = sfclipboard returns a handle to the Stateflow clipboard object, which you
use to copy objects from one chart or state to another.

Examples
Copy the init function from the Init chart to the Pool chart in the sf_pool model:

sf_pool;
% Get handle to the root object
rt = sfroot;
% Get handle to 'init' function in Init chart
f1 = rt.find('-isa','Stateflow.EMFunction','Name','init');
% Get handle to Pool chart
chP = rt.find('-isa','Stateflow.Chart','Name','Pool');
% Get handle to the clipboard object
cb = sfclipboard;
% Copy 'init' function to the clipboard
cb.copy(f1);
% Paste 'init' function to the Pool chart
cb.pasteTo(chP);
% Get handle to newly pasted function
f2 = chP.find('-isa','Stateflow.EMFunction','Name','init');
% Reset position of new function in the Pool chart
f2.Position = [90 180 90 60];

1 Functions — Alphabetical List

1-2

See Also
sfgco | sfnew | sfroot | stateflow

Topics
“Copy Objects”
“Create and Access Charts Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“Access the Chart Object”

Introduced before R2006a

 sfclipboard

1-3

sfclose
Close chart

Syntax
sfclose
sfclose('chart_name')
sfclose('all')

Description
sfclose closes the current chart.

sfclose('chart_name') closes the chart called 'chart_name'.

sfclose('all') closes all open or minimized charts. 'all' is a literal character
vector.

See Also
sfnew | sfopen | stateflow

Introduced in R2006a

1 Functions — Alphabetical List

1-4

sfdebugger
Open Stateflow Debugger

Syntax
sfdebugger
sfdebugger('model_name')

Description
sfdebugger opens the Stateflow Debugger for the current model.

sfdebugger('model_name') opens the debugger for the Simulink® model called
'model_name'. Use this input argument to specify which model to debug when you have
multiple models open.

See Also
sfexplr | sfhelp | sflib

Topics
“Debug Run-Time Errors in a Chart”

Introduced in R2006a

 sfdebugger

1-5

sfexplr
Open Model Explorer

Syntax
sfexplr

Description
sfexplr opens the Model Explorer. A model does not need to be open.

See Also
sfdebugger | sfhelp | sflib

Topics
“Use the Model Explorer with Stateflow Objects”

Introduced in R2006a

1 Functions — Alphabetical List

1-6

sfgco
Recently selected objects in chart

Syntax
object = sfgco

Description
object = sfgco returns a handle or vector of handles to the most recently selected
objects in a chart.

Output Arguments
object

Handle or vector of handles to the most recently selected objects in a chart
Empty matrix No charts are open, or you have no edited

charts.
Handle to the chart most recently clicked You clicked in a chart, but did not select

any objects.
Handle to the selected object You selected one object in a chart.
Vector of handles to the selected objects You selected multiple objects in a chart.
Vector of handles to the most recently
selected objects in the most recently
selected chart

You selected multiple objects in multiple
charts.

Examples
Zoom in on a state after clicking it:

 sfgco

1-7

myState = sfgco;
% Zoom in on the selected state
myState.fitToView;

See Also
sfnew | sfroot | stateflow

Topics
“Create and Access Charts Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“Zoom a Chart Object Using the API”

Introduced before R2006a

1 Functions — Alphabetical List

1-8

sfhelp
Open Stateflow online help

Syntax
sfhelp

Description
sfhelp opens the Stateflow online help in the MATLAB® Help browser.

See Also
sfdebugger | sfexplr | sfnew | stateflow

Introduced before R2006a

 sfhelp

1-9

sflib
Open Stateflow library window

Syntax
sflib

Description
sflib opens the Stateflow block library. From this library, you can drag Stateflow blocks
into Simulink models and access the Stateflow Examples Library.

See Also
sfdebugger | sfexplr | sfhelp | sfnew

Introduced in R2006a

1 Functions — Alphabetical List

1-10

sfnew
Create model containing empty Stateflow block

Syntax
sfnew
sfnew('chart_type')
sfnew('model_name')
sfnew('chart_type','model_name')

Description
sfnew creates an untitled model with an empty chart. Stateflow sets the default action
language for new charts to MATLAB. To change the default action language to C, use the
command sfpref('ActionLanguage','C'). For more information, see “Modify the
Action Language for a Chart”.

sfnew('chart_type') creates an untitled model that contains an empty block of type
chart_type.

sfnew('model_name') creates a model called model_name with an empty chart with
the default action language.

sfnew('chart_type','model_name') creates a model called model_name with an
empty block of type chart_type.

Input Arguments
chart_type

Empty block to add to an empty model:
-MATLAB Use a chart that supports MATLAB

expressions in Stateflow actions

 sfnew

1-11

-C Use a chart that supports C expressions
in Stateflow actions

-Mealy Use a chart that supports only Mealy
state machine semantics

-Moore Use a chart that supports only Moore
state machine semantics

-TT Use a truth table
-STT Use a state transition table

model_name

Name of the model.

Examples
Create a untitled model with an empty chart that uses MATLAB as the action language:

sfnew()

Create a model called MyModel with an empty chart that uses only Mealy semantics:

sfnew('-Mealy','MyModel')

Create a model called MyModel with an empty chart that uses only Moore semantics:

sfnew('-Moore','MyModel')

See Also
sfhelp | sfprint | sfroot | sfsave | stateflow

Topics
“Model Event-Driven System”
“Create Mealy and Moore Charts”
“Build Model with Stateflow Truth Table”
“Syntax for States and Transitions”

1 Functions — Alphabetical List

1-12

Introduced before R2006a

 sfnew

1-13

sfopen
Open existing model

Syntax
sfopen

Description
sfopen prompts you for a model file and opens the model that you select from your file
system.

See Also
sfclose | sfdebugger | sfexplr | sflib | sfnew | stateflow

Introduced in R2006a

1 Functions — Alphabetical List

1-14

sfprint
Print graphical view of charts

Syntax
sfprint
sfprint(objects)
sfprint(objects,format)
sfprint(objects,format,outputOption)
sfprint(objects,format,outputOption,wholeChart)

Description
sfprint prints the current chart to the default printer.

sfprint(objects) prints all charts specified by objects to the default printer.

sfprint(objects,format) prints all charts specified by objects in the specified
format to output files. Each output file matches the name of the chart and the file
extension matches the format.

sfprint(objects,format,outputOption) prints all charts specified by objects in
the specified format to the file or printer specified in outputOption.

sfprint(objects,format,outputOption,wholeChart) prints all charts specified
by objects in the specified format to the file or printer specified in outputOption. As
specified in wholeChart, prints either a complete or current view.

Examples

Print open chart

sfprint

 sfprint

1-15

Prints current chart to the default printer.

Print all charts specified in path

sfprint('sf_car/shift_logic');

Prints the chart with the path ‘sf_car/shift_logic’ to the default printer.

Print chart specified in path to a JPG file format.

sfprint('sf_car/shift_logic','jpg')

Prints a copy of the chart ‘sf_car/shift_logic’ in JPG format to the file
‘sf_car_shift_logic.jpg’.

Print chart in TIFF format to the clipboard.

sfprint(gcs,'tiff','clipboard')

Prints the chart in the current system to the clipboard in TIFF format.

Print the current view of a chart.

sfprint('sf_car/shift_logic','png','file',0)

Prints the current view of ‘sf_car/shift_logic’ in a PNG format to the file
‘sf_car_shift_logic.png’.

Input Arguments
objects — Identifier of charts to print
gcb (default) | gcs | character vector

Identifier of charts to print. Use:

1 Functions — Alphabetical List

1-16

• gcb to specify the current block of the model.
• gcs to specify the current system of the model.
• a character vector to specify the path of a chart, model, subsystem, or block.

Example: sfprint(gcs)

Prints all the charts in the current system to the default printer.
Example: sfprint('sf_pool/Pool')

Prints the complete chart with the path 'sf_pool/Pool' to the default printer.

format — Output format of printed charts
'bitmap' | 'jpg' | 'meta' | 'pdf' | 'png' | 'svg' | 'tiff'

Output format of the printed charts specified as one of these values:
'bitmap' Save the chart image to the clipboard as a

bitmap (for Windows® operating systems
only)

'jpg' Generate a JPEG file
'meta' Save the chart image to the clipboard as a

metafile (for Windows operating systems
only)

'pdf' Generate a PDF file
'png' Generate a PNG file
'svg' Generate an SVG file
'tiff' Generate a TIFF file

Example: sfprint('sf_car/shift_logic','jpg')

Prints the complete chart with the path 'sf_car/shift_logic' in a JPEG format to a
file in the current folder named 'sf_car_shift_logic.jpg'.
Data Types: char

outputOption — Name of the printer or output file
'file' (default) | character vector | 'clipboard' | 'promptForFile' | 'printer'

Name of the output file or printer specified as one of these values:

 sfprint

1-17

'file' Send output to a default file with the name
chart_name.file_extension. The file
name is the name of the chart, with an
extension that matches the output format.

character vector Specify the name of the output file with a
character vector.

'clipboard' Copy output to the clipboard
'promptForFile' Prompts the user interactively for path and

file name.
'printer' Send output to the default printer (use only

with 'ps', or 'eps' formats)

Example: sfprint('sf_car/shift_logic','png','myFile')

Prints the complete chart whose path is 'sf_car/shift_logic' in the PNG format to
a file in the current folder with the name 'myFile'.png.
Example: sfprint('sf_car/shift_logic,'pdf','promptForFile')

Prints all charts in the current block of the model in PDF format. A dialog box opens for
each chart to prompt you for the path and name of the output file.
Data Types: char

wholeChart — View of charts to print
1 (default) | 0

View of charts to print specified as a integer of value 0 or 1. A value of 1 prints the
complete views of all the charts, whereas a value of 0 prints the current views of all the
charts.
Example: sfprint(gcs,'png','file',0)

Prints the current view of all charts in the current system in PNG format using default
file names.

See Also
gcb | gcs | sfhelp | sfnew | sfsave | stateflow

1 Functions — Alphabetical List

1-18

Introduced before R2006a

 sfprint

1-19

sfroot
Root object

Syntax
object = sfroot

Description
object = sfroot returns a handle to the top-level object in the Stateflow hierarchy of
objects. Use the root object to access all other objects in your charts when using the API.

Examples
Zoom in on a state in your chart:

old_sf_car;
% Get handle to the root object
rt = sfroot;
% Find the state with the name 'first'
myState = rt.find('-isa','Stateflow.State','Name','first');
% Zoom in on that state in the chart
myState.fitToView;

See Also
sfclipboard | sfgco

Topics
“Create and Access Charts Using the Stateflow API”
“Getting a Handle on Stateflow API Objects”
“Access the Chart Object”

1 Functions — Alphabetical List

1-20

Introduced before R2006a

 sfroot

1-21

sfsave
Save chart in current folder

Syntax
sfsave
sfsave('model_name')
sfsave('model_name','new_model_name')
sfsave('Defaults')

Description
sfsave saves the chart in the current model.

sfsave('model_name') saves the chart in the model called 'model_name'.

sfsave('model_name','new_model_name') saves the chart in 'model_name' to
'new_model_name'.

sfsave('Defaults') saves the settings of the current model as defaults.

The model must be open and the current folder must be writable.

Examples
Develop a script to create a baseline chart and save it in a new model:

bdclose('all');

% Create an empty chart in a new model
sfnew;

% Get root object
rt = sfroot;

1 Functions — Alphabetical List

1-22

% Get model
m = rt.find('-isa','Simulink.BlockDiagram');

% Get chart
chart1 = m.find('-isa','Stateflow.Chart');

% Create two states, A and B, in the chart
sA = Stateflow.State(chart1);
sA.Name = 'A';
sA.Position = [50 50 100 60];
sB = Stateflow.State(chart1);
sB.Name = 'B';
sB.Position = [200 50 100 60];

% Add a transition from state A to state B
tAB = Stateflow.Transition(chart1);
tAB.Source = sA;
tAB.Destination = sB;
tAB.SourceOClock = 3;
tAB.DestinationOClock = 9;

% Add a default transition to state A
dtA = Stateflow.Transition(chart1);
dtA.Destination = sA;
dtA.DestinationOClock = 0;
x = sA.Position(1)+sA.Position(3)/2;
y = sA.Position(2)-30;
dtA.SourceEndPoint = [x y];

% Add an input in1
d1 = Stateflow.Data(chart1);
d1.Scope = 'Input';
d1.Name = 'in1';

% Add an output out1
d2 = Stateflow.Data(chart1);
d2.Scope = 'Output';
d2.Name = 'out1';

% Save the chart in a model called "NewModel"
% in current folder
sfsave('untitled','NewModel');

Here is the resulting model:

 sfsave

1-23

Here is the resulting chart:

See Also
find | sfclose | sfnew | sfopen | sfroot

Topics
“Create and Access Charts Using the Stateflow API”
“Create a MATLAB Script of API Commands”

Introduced before R2006a

1 Functions — Alphabetical List

1-24

stateflow
Create empty chart

Syntax
stateflow

Description
stateflow creates an untitled model that contains an empty chart. The function also
opens the Stateflow block library. From this library, you can drag Stateflow blocks into
models or access the Stateflow Examples Library.

See Also
sflib | sfnew

Introduced before R2006a

 stateflow

1-25

Block Reference

2

Chart
Implement control logic with finite state machine
Library: Stateflow

Description
A finite state machine is a representation of an event-driven (reactive) system. In an
event-driven system, the system responds to an event by making a transition from one
state (mode) to another. This transition occurs if the condition defining the change is
true.

A Stateflow chart is a graphical representation of a finite state machine. States and
transitions form the basic elements of the system. You can also represent stateless flow
charts.

For example, you can use Stateflow charts to control a physical plant in response to
events such as a temperature and pressure sensors, clocks, and user-driven events.

You can also use a state machine to represent the automatic transmission of a car. The
transmission has these operating states: park, reverse, neutral, drive, and low. As the
driver shifts from one position to another, the system makes a transition from one state
to another, for example, from park to reverse.

A Stateflow chart can use MATLAB or C as the action language to implement control
logic.

This block diagram represents a machine on an assembly line that feeds raw material to
other parts of the line. It contains a chart, Feeder, with MATLAB as the action
language.

2 Block Reference

2-2

To open the chart, double-click the Feeder block in the model.

 Chart

2-3

For a tutorial on this model, see “Model Event-Driven System”.

Ports

Input

Port_1 — Input port
scalar | vector | matrix

2 Block Reference

2-4

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder™ or Embedded Coder®.

Main

Show port lables — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port lables on the Chart block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

 Chart

2-5

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsytem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

2 Block Reference

2-6

 off
When determining block method execution order, treat all blocks in the chart as
being at the same level in the model hierarchy as the chart. This hierarchy treatment
can cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit.
For example, when Simulink needs to compute the output of the chart, Simulink
invokes the output methods of all the blocks in the chart before invoking the output
methods of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires
the Simulink Coder software.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

Try to eliminate any artificial algebraic loops that include the atomic subchart

See also “Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems” (Simulink).

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

 Chart

2-7

Dependency

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates,
use this sample time.

[Ts 0]
Specify periodic sample time.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: SystemSampleTime
Type: character vector

2 Block Reference

2-8

Value: '-1' | '[Ts 0]'
Default: '-1'

Treat as grouped when propagating variant conditions — Control treating
subsytem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the chart, it propagates that condition to all the
blocks in the chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

 Chart

2-9

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts
with this setting generate functions that might have arguments depending on the
“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both try to determine if multiple
instances of a chart exist and if the code can be reused. The difference between the
options' behavior is that when reuse is not possible. In this case, Auto yields inlined
code, or if circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use chart name, Use function name, or User
specified. Otherwise, the names of your code files change whenever you modify
your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.
• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options

2 Block Reference

2-10

• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-

based system target file)
• Setting this parameter to Nonreusable function enables Function with

separate data (requires a license for Embedded Coder and an ERT-based system
target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa
Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

See Also

Introduced in R2013b

 Chart

2-11

Sequence Viewer
Display message or events between blocks during simulation

Library
Stateflow, SimEvents®, Simulink Test™

Description
The Sequence Viewer block displays messages or events between certain blocks during
simulation. The blocks that you can display messages and events for are called lifeline
blocks and include:

• Subsystems
• Stateflow charts
• Blocks that contain messages, for example, Stateflow charts.

Parameters

History

Specify maximum number of events to keep in viewer.

Default: 5000

2 Block Reference

2-12

See Also

Topics
“Work with Sequence Viewer”
“Work with Sequence Viewer” (SimEvents)

Introduced in R2015b

 Sequence Viewer

2-13

State Transition Table
Represent modal logic in tabular format
Library: Stateflow

Description
When you want to represent modal logic in tabular format, use this block. The State
Transition Table block uses only MATLAB as the action language.

Using the State Transition Table Editor, you can:

• Add states and enter state actions.
• Add hierarchy among your states.
• Enter conditions and actions for state-to-state transitions.
• Specify default transitions, inner transitions, and self-loop transitions.
• Add input or output data and events.
• Set breakpoints for debugging.
• Run diagnostics to detect parser errors.
• View autogenerated content as you edit the table.

For more information about the State Transition Table Editor, see “State Transition
Table Operations”.

Ports

Input
Port_1 — Input port
scalar | vector | matrix

2 Block Reference

2-14

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output

Port_1 — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main

Show port lables — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port lables on the Chart block icon.

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

 State Transition Table

2-15

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector
Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsytem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

2 Block Reference

2-16

 off
When determining block method execution order, treat all blocks in the chart as
being at the same level in the model hierarchy as the chart. This hierarchy treatment
can cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit.
For example, when Simulink needs to compute the output of the chart, Simulink
invokes the output methods of all the blocks in the chart before invoking the output
methods of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires
the Simulink Coder software.

Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

Try to eliminate any artificial algebraic loops that include the atomic subchart

See also “Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems” (Simulink).

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

 State Transition Table

2-17

Dependency

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates,
use this sample time.

[Ts 0]
Specify periodic sample time.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: SystemSampleTime
Type: character vector

2 Block Reference

2-18

Value: '-1' | '[Ts 0]'
Default: '-1'

Treat as grouped when propagating variant conditions — Control treating
subsytem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the chart, it propagates that condition to all the
blocks in the chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

 State Transition Table

2-19

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts
with this setting generate functions that might have arguments depending on the
“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both try to determine if multiple
instances of a chart exist and if the code can be reused. The difference between the
options' behavior is that when reuse is not possible. In this case, Auto yields inlined
code, or if circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use chart name, Use function name, or User
specified. Otherwise, the names of your code files change whenever you modify
your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.
• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options

2 Block Reference

2-20

• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-

based system target file)
• Setting this parameter to Nonreusable function enables Function with

separate data (requires a license for Embedded Coder and an ERT-based system
target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa
Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

See Also

Introduced in R2012b

 State Transition Table

2-21

Truth Table
Represent logical decision-making behavior with conditions, decisions, and actions
Library: Stateflow

Description
The Truth Table block is a truth table function that uses MATLAB as the action
language. When you want to use truth table logic directly in a Simulink model, use this
block. This block requires Stateflow.

When you add a Truth Table block directly to a model instead of calling truth table
functions from a Stateflow chart, these advantages apply:

• It is a more direct approach than creating a truth table within a Stateflow chart,
especially if your model requires only a single truth table.

• You can define truth table inputs and outputs with inherited types and sizes.

The Truth Table block works with a subset of the MATLAB language that is optimized
for generating embeddable C code. This block generates content as MATLAB code. As a
result, you can take advantage of other tools to debug your Truth Table block during
simulation.

If you double-click the Truth Table block, the Truth Table Editor opens to display its
conditions, actions, and decisions.

Using the Truth Table Editor, you can:

• Enter and edit conditions, actions, and decisions.
• Add or modify Stateflow data and ports by using the Ports and Data Manager.
• Run diagnostics to detect parser errors.
• View generated content after simulation.

For more information about the Truth Table Editor, see “Truth Table Editor Operations”.

2 Block Reference

2-22

Ports

Input

u — Input port
scalar | vector | matrix

When you create input data in the Symbols window, Stateflow creates input ports. The
input data that you create has a corresponding input port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Output

y — Output port
scalar | vector | matrix

When you create output data in the Symbols window, Stateflow creates output ports. The
output data that you create has a corresponding output port that appears once you create
data.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean | fixed point | enumerated | bus

Parameters
Parameters on the Code Generation tab require Simulink Coder or Embedded Coder.

Main

Show port lables — Select how to display port labels
FromPortIcon (default) | FromPortBlockName | SignalName

Select how to display port lables on the Chart block icon.

 Truth Table

2-23

none
Do not display port labels.

FromPortIcon
If the corresponding port icon displays a signal name, display the signal name on the
Chart block. Otherwise, display the port block name.

FromPortBlockName
Display the name of the corresponding port block on the Chart block.

SignalName
If a signal name exists, display the name of the signal connected to the port on the
Chart block. Otherwise, display the name of the corresponding port block.

Programmatic Use
Parameter: ShowPortLabels
Type: character vector
Value: 'FromPortIcon' | 'FromPortBlockName' | 'SignalName'
Default: 'FromPortIcon'

Read/Write permissions — Select access to contents of chart
ReadWrite (default) | ReadOnly | NoReadOrWrite

Control user access to the contents of the chart.

ReadWrite
Enable opening and modification of chart contents.

ReadOnly
Enable opening but not modification of the chart. If the chart resides in a block
library, you can create and open links to the chart and can make and modify local
copies of the chart but you cannot change the permissions or modify the contents of
the original library instance.

NoReadOrWrite
Disable opening or modification of chart. If the chart resides in a library, you can
create links to the chart in a model but you cannot open, modify, change permissions,
or create local copies of the chart.

Programmatic Use
Parameter: Permissions
Type: character vector

2 Block Reference

2-24

Value: 'ReadWrite' | 'ReadOnly' | 'NoReadOrWrite'
Default: 'ReadWrite'

Treat as atomic unit — Control execution of a subsytem as one unit
off (default) | on

When determining the execution order of block methods, causes Simulink to treat the
chart as a unit.

 off
When determining block method execution order, treat all blocks in the chart as
being at the same level in the model hierarchy as the chart. This hierarchy treatment
can cause the execution of methods of blocks in the chart to be interleaved with the
execution of methods of blocks outside the chart.

 on
When determining the execution order of block methods, treat the chart as a unit.
For example, when Simulink needs to compute the output of the chart, Simulink
invokes the output methods of all the blocks in the chart before invoking the output
methods of other blocks at the same level as the chart block.

Dependency

If you select this parameter, you enable the Minimize algebraic loop occurrences,
Sample time, and Function packaging parameters. Function packaging requires
the Simulink Coder software.
Programmatic Use
Parameter: TreatAsAtomicUnit
Type: character vector
Value: 'off' | 'on'
Default: 'off'
See also

• “Generate Reusable Code for Atomic Subcharts”

Minimize algebraic loop occurrences — Control elimination of algebraic loops
off (default) | on

Try to eliminate any artificial algebraic loops that include the atomic subchart

 Truth Table

2-25

See also “Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems” (Simulink).

 off
Do not try to eliminate any artificial algebraic loops that include the atomic subchart.

 on
Try to eliminate any artificial algebraic loops that include the atomic subchart.

Dependency

To enable this parameter, select the Treat as atomic unit parameter.
Programmatic Use
Parameter: MinAlgLoopOccurrences
Type: character vector
Value: 'off' | 'on'
Default: 'off'

Sample time — Specify time interval
-1 (default) | [Ts 0]

Specify whether all blocks in this chart must run at the same rate or can run at different
rates.

• If the blocks in the chart can run at different rates, specify the chart sample time as
inherited (-1).

• If all blocks must run at the same rate, specify the sample time corresponding to this
rate as the value of the Sample time parameter.

• If any of the blocks in the chart specify a different sample time (other than -1 or inf),
Simulink displays an error message when you update or simulate the model. For
example, suppose all the blocks in the chart must run 5 times a second. To ensure this
time, specify the sample time of the chart as 0.2. In this example, if any of the blocks
in the chart specify a sample time other than 0.2, -1, or inf, Simulink displays an
error when you update or simulate the model.

-1
Specify inherited sample time. If the blocks in the chart can run at different rates,
use this sample time.

[Ts 0]
Specify periodic sample time.

2 Block Reference

2-26

Dependency

To enable this parameter, select the Treat as atomic unit parameter.

Programmatic Use
Parameter: SystemSampleTime
Type: character vector
Value: '-1' | '[Ts 0]'
Default: '-1'

Treat as grouped when propagating variant conditions — Control treating
subsytem as unit
on (default) | off

When propagating variant conditions from Variant Source blocks or to Variant Sink
blocks, causes Simulink to treat the chart as a unit.

 on
Simulink treats the chart as a unit when propagating variant conditions from
Variant Source blocks or to Variant Sink blocks. For example, when Simulink
computes the variant condition of the chart, it propagates that condition to all the
blocks in the chart.

 off
Simulink treats all blocks in the chart as being at the same level in the model
hierarchy as the chart itself when determining their variant condition.

Programmatic Use
Parameter: TreatAsGroupedWhenPropagatingVariantConditions
Type: character vector
Value: 'on' | 'off'
Default: 'on'

Code Generation

Function packaging — Select code format
Auto (default) | Inline | Nonreusable function | Reusable function

Select the generated code format for an atomic (nonvirtual) subchart.

 Truth Table

2-27

Auto
Simulink Coder chooses the optimal format for your system based on the type and
number of instances of the chart that exist in the model.

Inline
Simulink Coder inlines the chart unconditionally.

Nonreusable function
Simulink Coder explicitly generates a separate function in a separate file. Charts
with this setting generate functions that might have arguments depending on the
“Function interface” (Simulink) parameter setting. You can name the generated
function and file using parameters “Function name” (Simulink) and “File name (no
extension)” (Simulink). These functions are not reentrant.

Reusable function
Simulink Coder generates a function with arguments that allows reuse of chart code
when a model includes multiple instances of the chart.

This option generates a function with arguments that allows chart code to be reused
in the generated code of a model reference hierarchy that includes multiple instances
of a chart across referenced models. In this case, the chart must be in a library.

Tips

• When you want multiple instances of a chart represented as one reusable function,
you can designate each one of them as Auto or as Reusable function. It is best to
use one because using both creates two reusable functions, one for each designation.
The outcomes of these choices differ only when reuse is not possible. Selecting Auto
does not allow for control of the function or file name for the chart code.

• The Reusable function and Auto options both try to determine if multiple
instances of a chart exist and if the code can be reused. The difference between the
options' behavior is that when reuse is not possible. In this case, Auto yields inlined
code, or if circumstances prohibit inlining, separate functions for each chart instance.

• If you select the Reusable function while your generated code is under source
control, set File name options to Use chart name, Use function name, or User
specified. Otherwise, the names of your code files change whenever you modify
your model, which prevents source control on your files.

Dependency

• This parameter requires Simulink Coder.

2 Block Reference

2-28

• To enable this parameter, select Treat as atomic unit.
• Setting this parameter to Nonreusable function or Reusable function enables

the following parameters:

• Function name options
• File name options
• Memory section for initialize/terminate functions (requires Embedded Coder and

an ERT-based system target file)
• Memory section for execution functions (requires Embedded Coder and an ERT-

based system target file)
• Setting this parameter to Nonreusable function enables Function with

separate data (requires a license for Embedded Coder and an ERT-based system
target file).

Programmatic Use
Parameter: RTWSystemCode
Type: character vector
Value: 'Auto' | 'Inline' | 'Nonreusable function' | 'Reusable function'
Default: 'Auto'

Block Characteristics
Data Types doublea | singlea | Booleana | base integera | fixed

pointa | enumerateda | busa
Multidimensional
Signals

Yesa

Variable-Size
Signals

Yesa

a. Actual data type or capability support depends on block implementation.

See Also

Introduced before R2006a

 Truth Table

2-29

